You are reading the official PANDA publication list.
There is a list of related publications available as well.
Furthermore, you can find a list of PhD thesis and a list of approved Technical Design Reports.


  • Belias, A.
    Overview of the PANDA detector design at FAIR
    International journal of modern physics / Conference series 51, 2360001 (2023) DOI:10.1142/S2010194523600017
  • Simon Gazagnas et al.
    Reconstructing charged-particle trajectories in the PANDA Straw Tube Tracker using the LOcal Track Finder (LOTF) algorithm
    Eur. Phys. J. A 59, 100 (2023), DOI: 10.1140/epja/s10050-023-01005-8
  • Falk Schupp, Michael Bölting, Patrick Achenbach, Sebastian Bleser, Josef Pochodzalla, Marcell Steinen
    An infrared light-guide based target positioning system for operation in a harsh environment
    arXiv 2023 DOI: 10.48550/arXiv.2303.13359,
    Nuclear Instruments & Methods in Physics Research / Section A 1056, 168684 (2023) DOI: 10.1016/j.nima.2023.168684
  • Dzhygadlo, R. ; Belias, A. ; Gerhardt, A. ; et al
    The PANDA Barrel DIRC
    Nuclear instruments & methods in physics research / Section A 1055, 168480 (2023) DOI:10.1016/j.nima.2023.168480
  • H. Flemming, O. Noll
    Performance tests of feature extraction algorithms for short preamplifier transient
    Nucl. Instr. Meth. A (2023), DOI: 10.1016/j.nima.2022.167880
  • Miehling, D. ; Böhm, M. ; Gumbert, K. ; et al
    Lifetime and performance of the very latest microchannel-plate photomultipliers
    Nuclear instruments & methods in physics research / Section A 1049, 168047 (2023) DOI:10.1016/j.nima.2023.168047
  • Krauss, S. ; Böhm, M. ; Gumbert, K. ; et al
    Performance of the most recent Microchannel-Plate PMTs for the PANDA DIRC detectors at FAIR
    Nuclear instruments & methods in physics research / Section A 1057, 168659 (2023) DOI:10.1016/j.nima.2023.168659
  • P. Jiang, K. Götzen, R. Kliemt, F. Nerling, K. Peters
    Deep Machine Learning for the PANDA Software Trigger
    arXiv 2022 DOI: 10.48550/ARXIV.2211.15390
    The European physical journal / C 83(4), 337 (2023) DOI:10.1140/epjc/s10052-023-11494-y





  • S. Chesnevskaya, S. Zimmermann and J. Zmeskal
    Performance Monitoring of the Barrel Time-of-Flight Supermodule for the PANDA Experiment at FAIR
    JINST 16 (2021), DOI: 10.1088/1748-0221/16/12/T12002
  • Barucca, G., Davì, F., Lancioni, G. et al.
    Panda Phase One
    Eur. Phys. J. A 57184 (2021), DOI: 10.1140/epja/s10050-021-00475-y
  • Barucca, G., Davì, F., Lancioni, G. et al.
    Study of excited $\Xi$ baryons with the  PANDA detector
    Eur. Phys. J. A 57149 (2021), DOI: 10.1140/epja/s10050-021-00444-5
  • [PANDA collaboration]
    The potential of $Λ$ and $Ξ^−$ studies with PANDA at FAIR
    Eur. Phys. J. A 57 No. 154 (2021), arXiv: 2009.11582, DOI: 10.1140/epja/s10050-021-00386-y
  • Piotr Lebiedowicz, Otto Nachtmann, Piotr Salabura, and Antoni Szczurek
    Exclusive f1(1285) meson production for energy ranges available at the GSI-FAIR with HADES and PANDA
    Phys.Rev.D 104 (2021), DOI: 10.1103/PhysRevD.104.034031
  • T. Held, M. Albrecht, T. Erlen et al.,
    An LED/LCD-based monitoring system for the PANDA Electromagnetic Calorimeter,
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 997, 2021, DOI: 10.1016/j.nima.2021.165167
  • [PANDA collaboration]
    A feature-extraction and pile-up reconstruction algorithm for the forward-spectrometer EMC of the PANDA experiment
    Nucl.Instrum.Meth.A 1011 (2021), DOI: 10.1016/j.nima.2021.165601
  • [PANDA collaboration]
    Charm (-onium) physics at PANDA
    PoS CHARM2020 (2021), DOI: 10.22323/1.385.0004





  • [PANDA Collaboration] M. Moritz et al.,
    The Electromagnetic Calorimeter for the PANDA Target Spectrometer,
    Journal of Physics, DOI: 10.1088/1742-6596/1162/1/012025, 2019
  • [PANDA Collaboration] G.Barucca et al.,
    Precision resonance energy scans with the PANDA experiment at FAIR,
    Eur. Phys. J. A (2019) 55: 42, DOI: 10.1140/epja/i2019-12718-2, 2019
  • [PANDA Collaboration] G.Barucca et al.,
    Precision resonance energy scans with the PANDA experiment at FAIR,
    Eur. Phys. J. A 55, 42 (2019), DOI: 10.1140/epja/i2019-12718-2
  • [PANDA Collaboration] J.Pochodzalla et al.,
    Strangeness nuclear physics at PANDA in a nutshell,
    arXiv: 1906.02357
  • G.Schepers et al. (PANDA Cherenkov Group),
    The innovative design of the PANDA Barrel DIRC,
    Il Nuovo Cimento C 42 02-03, DOI: 10.1393/ncc/i2019-19070-5, 2019
  • A. Lehmann et al.,
    Latest improvements of microchannel-plate PMTS,
    Nucl.Instrum.Meth. A 162357 Volume 958, 1 April 2020 , DOI: 10.1016/j.nima.2019.162357, 2019
  • [PANDA Collaboration] G. Perez-Andrade et al.,
    Simulation study of the $\bar{p}p\rightarrow \bar{\Sigma}^0 \Lambda$ reaction with PANDA at FAIR,
    Journal of Physics: Conference Series (Vol. 1308, No. 1, p. 012017), DOI: 10.1088/1742-6596/1308/1/012017, 2019



  • K. Föhl et al.,
    The Endcap Disc DIRC detector of PANDA,
    Eur. Phys. J. A (2019) 55: 42, DOI: 10.1016/j.nima.2018.11.102, 2018
  • R. Dzhygadlo et al. (PANDA Cherenkov Group),
    The Barrel DIRC Detector for the PANDA Experiment at FAIR,
    Springer Proceedings in Physics, vol 212. Springer, Singapore, DOI:10.1007/978-981-13-1313-4_25, 2018
  • J. Schwiening et al. (PANDA Cherenkov Group),
    The PANDA Barrel DIRC,
    Journal of Instrumentation, JINST 13 C03004, DOI:10.1088/1748-0221/13/03/C03004, arXiv:1803.10642, 2018
  • J. Smyrski et al..,
    Pressure stabilized straw tube modules for the PANDA Forward Tracker,
    JINST 13 (2018) no.06, P06009, DOI: 10.1088/1748-0221/13/06/P06009, 2018
  • A. Apostolou, J. Messchendorp, N. Kalantar-Nayestanaki, J. Ritman, P. Wintz,
    Performance of a prototype Straw Tube Tracker for the P̄ANDA experiment,
    J. Phys. Conf. Ser. 1024 (2018) no.1, 012013, DOI: 10.1088/1742-6596/1024/1/012013, Conference: C17-05-28 Proceedings, 2018
  • T. Nasawasd et al.,
    Track propagation methods for the correlation of charged tracks with clusters in the calorimeter of the PANDA experiment,
    Published in JINST 13 (2018) no.02, T02008, DOI: 10.1088/1748-0221/13/02/T02008, 2018
  • K. Föhl et al,
    The PANDA Endcap Disc DIRC,
    Published in JINST 13 (2018) no.02, C02002, DOI: 10.1088/1748-0221/13/02/C02002, 2018
  • [PANDA Collaboration] A. Dbeyssi et al.,
    Investigation of the proton structure at PANDA-FAIR,
    PoS Hadron2017 (2018) 171, DOI: 10.22323/1.310.0171, 2018
  • V.Abazov et al.,
    PANDA Muon System Prototype,
    EPJ WoC, Volume 177(2018)04001, DOI: 10.1051/epjconf/201817704001, 2018
  • A. Lehmann et al.,
    Lifetime of MCP-PMTs and other performance features,
    Journal of Instrumentation, 2018 JINST 13 C02010, DOI: 10.1088/1748-0221/13/02/C02010, 2018
  • A. Lai,
    The PANDA Strip ASIC: PASTA,
    Journal of Instrumentation, Volume 13, January 2018, DOI: 10.1088/1748-0221/13/01/c01043, 2018


  • A. Lai et al.,
    Design, Implementation, and Verification of a DAQ System for the Prototypes of the F.E. Electronics of the PANDA MVD,
    Conference: 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), DOI: 10.1109/NSSMIC.2017.8533084, 2017
  • Klaus Peters, Lars Schmitt, Tobias Stockmanns & Johan Messchendorp,
    PANDA: Strong Interaction Studies with Antiprotons,
    Nuclear Physics News, 27:3, 24-28, DOI: 10.1080/10619127.2017.1351182, 2017
  • J. Smyrski et al.,
    Design of the forward straw tube tracker for the PANDA experiment
    The International Conference "Instrumentation for Colliding Beam Physics" (INSTR17), DOI: 10.1088/1748-0221/12/06/C06032, 2017
  • [PANDA Collaboration] B. Singh,
    Feasibility Study for the Measurement of $\pi N$ Transition Distribution Amplitudes with PANDA in $\bar{p}p\rightarrow J/\psi \pi^0$,
    Phys. Rev. D 95, 032003, DOI: 10.1103/PhysRevD.95.032003, 2017
  • T. Johansson,
    Hyperon Production in Annihilation Reactions,
    XVII International Converence on Hadron Spectroscopy and Structure (Hadron2017), Proceedings of Science, 310, 2017
  • [PANDA Collaboration] MarÍa Carmen Mora EspÍ et al.,
    Nucleon structure observables with PANDA,
    EPJ Web of Conferences 164, 06002 (2017), DOI: 10.1051/epjconf/201716406002, 2017
  • [PANDA Collaboration] L Bianchi et al.,
    Parallel Algorithms for Online Track Finding for the pANDA Experiment at FAIR,
    J.Phys.Conf.Ser. 898 (2017) no.7, 072040, DOI: 10.1088/1742-6596/898/7/072040, 2017
  • M. Düren et al.,
    The Endcap Disc DIRC of PANDA,
    Nucl. Instr. Meth. A,, DOI: 10.1016/j.nima.2017.02.077, 2017
  • M. Schmidt et al.,
    Particle identification algorithms for the PANDA Endcap Disc DIRC,
    2017 JINST 12 C12051, DOI: 10.1088/1748-0221/12/12/C12051, 2017
  • M. Böhm et al.,
    The PANDA Barrel-TOF Detector,
    Nucl. Instr. Meth. A., DOI: 10.1016/j.nima.2017.12.010, 2017
  • [PANDA Collaboration] Prencipe, E. et al.,
    Interface of the general fitting tool GENFIT2 in PandaRoot,
    Journal of physics / Conference Series 898, 042037-(2017), DOI: 10.1088/1742-6596/898/4/042037, 2017
  • Quagli, T. et al.,
    First results of the front-end ASIC for the strip detector of the PANDA MVD,
    Journal of Instrumentation 12(03), C03063 - C03063 (2017), DOI: 10.1088/1748-0221/12/03/C03063, 2017
  • A. Lehmann et al.,
    Recent developments with microchannel-plate PMTs,
    Nucl. Instr. Meth. A, DOI: 10.1016/j.nima.2016.12.063, 2017
  • A. Lehmann et al.,
    Tremendously increased lifetime of MCP-PMTs,
    Nucl. Instr. Meth. A845 (2017) 570, DOI: 10.1016/j.nima.2016.05.017, 2017
  • [PANDA Collaboration] B. Singh et al.,
    Technical Design Report for the PANDA Forward Spectrometer Calorimeter,
    arXiv:1704.02713, 2017
  • C. Schwarz et al.,
    The PANDA DIRC Detectors at FAIR,
    J. Inst. 12 (2017) C0700, DOI: 10.1088/1748-0221/12/07/C07006, arXiv:1707.09269
  • Y. Wang et al.,
    Antiproton-proton annihilation into charged light meson pairs within effective meson theory,
    Phys.Rev. C95 (2017) no.4,045202, DOI: 10.1103/PhysRevC.95.045202, 2017
  • Y. Wang et al.,
    Antiproton-protonannihilation into light neutral meson pairs within an effective meson theory,
    Phys. Rev.C 96, 025204 (2017), DOI: 10.1103/PhysRevC.96.025204, 2017
  • A. Bianconi, E. Tomasi-Gustafsson,
    Fourth dimension of the nucleon structure: Spacetime analysis of the time-like electromagnetic proton form factors,
    Phys. Rev. C95(2017) no.1, 015204, DOI: 10.1103/PhysRevC.95.015204, 2017
  • M. Böhm et al.,
    Fast SiPM Readout of the PANDA TOF Detector,
    J. Inst. 11 (2016) C05018, DOI: 10.1088/1748-0221/11/05/C05018, 2017
  • S. Zimmermann et al.,
    The PANDA Barrel-TOF Detector at FAIR,
    J. Inst. 12 (2017) C08017, DOI: 10.1088/1748-0221/12/08/C08017, 2017
  • M. Pfaffinger et al.,
    Recent results with lifetime enhanced microchannel-plate photomultipliers,
    Nucl. Instr. Meth. A, DOI: 10.1016/j.nima.2017.10.084, 2017
  • [PANDA Collaboration] T. Stockmanns et al.,
    FairMQ for Online Reconstruction - An example on PANDA test beam data,
    J. Phys.: Conf. Ser. 898 032021, DOI: 10.1088/1742-6596/898/3/032021, 2017


  • [PANDA Collaboration] B. Singh et al.,
    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR,
    Eur. Phys. J. A 52, no. 10, 325, DOI: 10.1140/epja/i2016-16325-5, 2016
  • [PANDA Collaboration], I. Zimmermann et al.,
    Feasibility studies on time-like proton electromagnetic form factors at PANDA-FAIR,
    AIP Conf. Proc. 1735, 080004, DOI: 10.1063/1.4949457, 2016
  • [PANDA Collaboration] J. Messchendorp,
    PANDA Experiment at FAIR - Subatomic Physics with Antiprotons,
    JPS Conf. Proc. 13, 010016, DOI: 10.7566/JPSCP.13.010016, 2016
  • [PANDA Collaboration] B. Singh,
    Study of Doubly Strange Systems with Stored Antiprotons,

    Nuclear Physics A, 954, 323-340, DOI: 10.1016/j.nuclphysa.2016.05.014, 2016
  • J. Pütz, A. Gillitzer, J. Ritman & T. Stockmanns,
    Study of Excited Ξ Baryons in Antiproton-Proton Collisions with the PANDA Detector
    Journal of Physics, Conference Series 742, 012028, DOI: 10.1088/1742-6596/742/1/012028, 2016
  • J. Pochodzalla et al.,
    Many Facets of Strangeness Nuclear Physics with Stored Antiprotons,
    JPS Conf. Proc. 17, 091002, DOI: 10.7566/JPSCP.17.091002, 2016
  • [PANDA Collaboration] E. Prencipe,
    Customization of the GENFIT2 Fitting Package in P̅ANDA,
    EPJ Web of Conferences 127, 00013 (2016), DOI: 10.1051/epjconf/201612700013, 2016
  • [PANDA Collaboration] E. Prencipe,
    Status and Perspectives for P̄ANDA at FAIR,
    Nucl. Part. Phys. Proc. 273-275 231-237, DOI: 10.1016/j.nuclphysbps.2015.09.031, 2016
  • A. Lehmann et al.,
    Lifetime of MCP-PMTs,
    2016 JINST 11 C05009, DOI: 10.1088/1748-0221/11/05/C05009, 2016
  • E. Etzelmüller et al.,
    Tests and developments of the PANDA Endcap Disc DIRC,
    2016 JINST 11 C04014, DOI: 10.1088/1748-0221/11/04/C04014, 2016
  • J. Rieke et al.,
    Resolution changes of MCP-PMTs in magnetic fields,
    2016 JINST 11 C05002, DOI: 10.1088/1748-0221/11/05/C05002, 2016
  • R. Dzhygadlo et al.,
    The PANDA Barrel DIRC,
    2016 JINST 11 C05013, DOI: 10.1088/1748-0221/11/05/C05013, 2016
  • Prencipe, E., Lange, J. S., Blinov, A.,
    New spectroscopy with PANDA at FAIR: X, Y, Z and the F-wave charmonium states,
    Inst. 1735(1), (2016), DOI: 10.1063/1.4949447, 2016
  • Pietro, V. D., Brinkmann, K.-T., Riccardi, A., et al.,
    A time-based front-end ASIC for the silicon micro strip sensors of the P̄ANDA Micro Vertex Detector,
    Journal of Instrumentation 11(03), C03017 - C03017 (2016) DOI: 10.1088/1748-0221/11/03/C03017, 2016
  • [PANDA Collaboration] Cao, L., Ritman, J.,
    Simulated Measurement of the Ds Meson Semileptonic Decay Form Factor with the P̄ANDA Detector,
    Nuclear and particle physics proceedings 273-275, 2485 - 2487 (2016), DOI: 10.1016/j.nuclphysbps.2015.09.433
  • A. Bianconi, E. Tomasi-Gustafsson,
    Phenomenological analysis of near threshold periodic modulations of the proton time-like form factor,
    Phys.Rev. C93 (2016) no.3,035201, DOI: 10.1103/PhysRevC.93.035201, 2016